Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1342814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638357

RESUMO

Introduction: The severity of flood disasters is increasing due to climate change, resulting in a significant reduction in the yield and quality of forage crops worldwide. This poses a serious threat to the development of agriculture and livestock. Hemarthria compressa is an important high-quality forage grass in southern China. In recent years, frequent flooding has caused varying degrees of impacts on H. compressa and their ecological environment. Methods: In this study, we evaluated differences in flooding tolerance between the root systems of the experimental materials GY (Guang Yi, flood-tolerant) and N1291 (N201801291, flood-sensitive). We measured their morphological indexes after 7 d, 14 d, and 21 d of submergence stress and sequenced their transcriptomes at 8 h and 24 h, with 0 h as the control. Results: During submergence stress, the number of adventitious roots and root length of both GY and N1291 tended to increase, but the overall growth of GY was significantly higher than that of N1291. RNA-seq analysis revealed that 6046 and 7493 DEGs were identified in GY-8h and GY-24h, respectively, and 9198 and 4236 DEGs in N1291-8h and N1291-24h, respectively, compared with the control. The GO and KEGG enrichment analysis results indicated the GO terms mainly enriched among the DEGs were oxidation-reduction process, obsolete peroxidase reaction, and other antioxidant-related terms. The KEGG pathways that were most significantly enriched were phenylpropanoid biosynthesis, plant hormone signal transduction etc. The genes of transcription factor families, such as C2H2, bHLH and bZIP, were highly expressed in the H. compressa after submergence, which might be closely related to the submergence adaptive response mechanisms of H. compressa. Discussion: This study provides basic data for analyzing the molecular and morphological mechanisms of H. compressa in response to submergence stress, and also provides theoretical support for the subsequent improvement of submergence tolerance traits of H. compressa.

2.
IEEE Trans Image Process ; 33: 2266-2278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38470581

RESUMO

The problem of sketch semantic segmentation is far from being solved. Despite existing methods exhibiting near-saturating performances on simple sketches with high recognisability, they suffer serious setbacks when the target sketches are products of an imaginative process with high degree of creativity. We hypothesise that human creativity, being highly individualistic, induces a significant shift in distribution of sketches, leading to poor model generalisation. Such hypothesis, backed by empirical evidences, opens the door for a solution that explicitly disentangles creativity while learning sketch representations. We materialise this by crafting a learnable creativity estimator that assigns a scalar score of creativity to each sketch. It follows that we introduce CreativeSeg, a learning-to-learn framework that leverages the estimator in order to learn creativity-agnostic representation, and eventually the downstream semantic segmentation task. We empirically verify the superiority of CreativeSeg on the recent "Creative Birds" and "Creative Creatures" creative sketch datasets. Through a human study, we further strengthen the case that the learned creativity score does indeed have a positive correlation with the subjective creativity of human. Codes are available at https://github.com/PRIS-CV/Sketch-CS.

3.
Front Microbiol ; 15: 1275865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419639

RESUMO

Introduction: The dietary protein level plays a crucial role in maintaining the equilibrium of rumen microbiota in yaks. To explore the association between dietary protein levels, rumen microbiota, and muscle metabolites, we examined the rumen microbiome and muscle metabolome characteristics in yaks subjected to varying dietary protein levels. Methods: In this study, 36 yaks were randomly assigned to three groups (n = 12 per group): low dietary protein group (LP, 12% protein concentration), medium dietary protein group (MP, 14% protein concentration), and high dietary protein group (HP, 16% protein concentration). Results: 16S rDNA sequencing revealed that the HP group exhibited the highest Chao1 and Observed_species indices, while the LP group demonstrated the lowest. Shannon and Simpson indices were significantly elevated in the MP group relative to the LP group (P < 0.05). At the genus level, the relative abundance of Christensenellaceae_R-7_group in the HP group was notably greater than that in the LP and MP groups (P < 0.05). Conversely, the relative abundance of Rikenellaceae_RC9_gut_group displayed an increasing tendency with escalating feed protein levels. Muscle metabolism analysis revealed that the content of the metabolite Uric acid was significantly higher in the LP group compared to the MP group (P < 0.05). The content of the metabolite L-(+)-Arabinose was significantly increased in the MP group compared to the HP group (P < 0.05), while the content of D-(-)-Glutamine and L-arginine was significantly reduced in the LP group (P < 0.05). The levels of metabolites 13-HPODE, Decanoylcarnitine, Lauric acid, L-(+)-Arabinose, and Uric acid were significantly elevated in the LP group relative to the HP group (P < 0.05). Furthermore, our observations disclosed correlations between rumen microbes and muscle metabolites. The relative abundance of NK4A214_group was negatively correlated with Orlistat concentration; the relative abundance of Christensenellaceae_R-7_group was positively correlated with D-(-)-Glutamine and L-arginine concentrations. Discussion: Our findings offer a foundation for comprehending the rumen microbiome of yaks subjected to different dietary protein levels and the intimately associated metabolic pathways of the yak muscle metabolome. Elucidating the rumen microbiome and muscle metabolome of yaks may facilitate the determination of dietary protein levels.

4.
Microorganisms ; 11(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37630524

RESUMO

A relatively stable microbial ecological balance system in the rumen plays an important role in rumen environment stability and ruminant health maintenance. No studies have reported how rumen fluid transplantation (RFT) affects the composition of rumen microorganisms and yak growth performance. In this experiment, we transplanted fresh rumen fluid adapted to house-feeding yaks to yaks transitioned from natural pastures to house-feeding periods to investigate the effects of rumen fluid transplantation on rumen microbial community regulation and production performance. Twenty yaks were randomly divided into the control group (CON; n = 10) and the rumen fluid transplantation group (RT; n = 10). Ten yaks that had been adapted to stall fattening feed in one month were selected as the rumen fluid donor group to provide fresh rumen fluid. Ruminal fluid transplantation trials were conducted on the 1st, 3rd, and 5th. Overall, 1 L of ruminal fluid was transplanted to each yak in the RT and CON group. The formal trial then began with both groups fed the same diet. After this, growth performance was measured, rumen fluid was collected, and rumen microbial composition was compared using 16s rRNA sequencing data. The results showed that rumen fluid transplantation had no significant effect on yak total weight gain or daily weight gain (p > 0.05), and feed efficiency was higher in the RT group than in the CON group at 3 months (treatment × month: p < 0.01). Ruminal fluid transplantation significantly affected rumen alpha diversity (p < 0.05). Up to day 60, the RT group had significantly higher OTU numbers, Shannon diversity, and Simpson homogeneity than the CON group. Principal coordinate analysis showed that the rumen microbiota differed significantly on days 4 and 7 (p < 0.05). Bacteroidota, Firmicutes, Proteobacteria, and Spirochaetes were the most abundant phyla in the rumen. The relative abundances of Bacteroidota, Proteobacteria, and Spirochaetes were lower in the RT group than in the CON group, with a decrease observed in Bacteroidota in the RT group on days 7 and 28 after rumen fluid transplantation (p = 0.013), while Proteobacteria showed a decreasing trend in the CON group and an increasing trend in RT; however, this was only at day 4 (p = 0.019). The relative abundance of Firmicutes was significantly higher in the RT group than in the CON group on days 4, 7, and 28 (p = 0.001). Prevotella and Rikenellaceae_RC9_gut_group were the predominant genera. In conclusion, our findings suggest that rumen fluid transplantation improves yak growth performance and rumen microbial reshaping. The findings of this study provide new insights into yak microbial community transplantation and a reference for improving feed efficiency in the yak industry.

5.
IEEE Trans Pattern Anal Mach Intell ; 45(10): 12068-12084, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37159309

RESUMO

As powerful as fine-grained visual classification (FGVC) is, responding your query with a bird name of "Whip-poor-will" or "Mallard" probably does not make much sense. This however commonly accepted in the literature, underlines a fundamental question interfacing AI and human - what constitutes transferable knowledge for human to learn from AI? This paper sets out to answer this very question using FGVC as a test bed. Specifically, we envisage a scenario where a trained FGVC model (the AI expert) functions as a knowledge provider in enabling average people (you and me) to become better domain experts ourselves. Assuming an AI expert trained using expert human labels, we anchor our focus on asking and providing solutions for two questions: (i) what is the best transferable knowledge we can extract from AI, and (ii) what is the most practical means to measure the gains in expertise given that knowledge? We propose to represent knowledge as highly discriminative visual regions that are expert-exclusive and instantiate it via a novel multi-stage learning framework. A human study of 15,000 trials shows our method is able to consistently improve people of divergent bird expertise to recognise once unrecognisable birds. We further propose a crude but benchmarkable metric TEMI and therefore allow future efforts in this direction to be comparable to ours without the need of large-scale human studies.


Assuntos
Algoritmos , Aves , Animais , Humanos
6.
Front Microbiol ; 13: 957152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246255

RESUMO

Ruminal microflora is closely correlated with the ruminant's diet. However, information regarding the effect of high concentrate diets on rumen microflora in yaks is lacking. In the current study, 24 healthy male yaks were randomly assigned to two groups, each fed with different diets: less concentrate (LC; concentrate: coarse = 40: 60) and high concentrate (HC; concentrate: coarse = 80: 20) diets. Subsequently, a 21-day feeding trial was performed with the yaks, and rumen fluid samples were collected and compared using 16 s rRNA sequencing. The results showed that NH3-N, total VFA, acetate, butyrate, isobutyrate, and isovalerate were significantly higher in the HC group than that in the LC group (p < 0.05), while microbial diversity and richness were significantly lower in the HC group (p < 0.05). Principal coordinate analysis indicated that rumen microflora was significantly different in LC and HC groups (p < 0.05). In the rumen, phyla Firmicutes and Bacteroidota were the most abundant bacteria, with Firmicutes being more abundant, and Bacteroidota being less abundant in the HC group than those found in the LC group. Christensenellaceae_R-7_group and Prevotella are the highest abundant ones at the genus level. The relative abundance of Acetitomaculum, Ruminococcus, and Candidatus_Saccharimonas were significantly higher in the HC group than that in the LC group (p < 0.05), while the relative abundance of Olsenella was significantly lower in the HC group than in the LC group (p < 0.05). Compared to the LC group, the relative abundance of Prevotella, Ruminococcus, and Candidatus_Saccharimonas was significantly higher in the HC group. The relative abundances of Prevotella, Prevotellaceae_UCG-003, Olsenella, Ruminococcus, Acetitomaculum, Candidatus_Saccharimonas, and NK4A214_group were correlated with ruminal fermentation parameters (p < 0.05). Furthermore, PICRUSt 2 estimation indicated that microbial genes associated with valine, leucine, and isoleucine biosynthesis were overexpressed in the rumen microflora of yaks in the HC group (p < 0.05). Conclusively, our results suggest that high concentrate diets affect the microflora composition and fermentation function in yak rumen. The present findings would provide new insights into the health of yaks under high concentrate feeding conditions and serve as a potent reference for the short-term fattening processes of yaks.

7.
Animals (Basel) ; 12(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139194

RESUMO

(1) Background: This study aimed to investigate the effects of different dietary concentrate to roughage ratios on growth performance and fecal microbiota composition of yaks by 16S rRNA gene sequencing. (2) Methods: In the present study, three diets with different dietary forage-to-concentrate ratios (50:50, 65:35, and 80:20) were fed to 36 housed male yaks. (3) Results: The result shows that Final BW, TWG, and ADG were higher in the C65 group than in the C50 and C80 groups, but the difference was not significant (p > 0.05). DMI in the C65 group was significantly higher than in the other two groups (p < 0.05). The DMI/ADG of the C65 group was lower than that of the other two groups, but the difference was insignificant (p > 0.05). At the phylum level, Firmicutes were the most abundant in the C65 group, and the relative abundance of Bacteroidetes was lower in the C65 group than in the other two groups. At the genus level, the relative abundances of Ruminococcaceae_UCG_005, Romboutsia, and Christensenellaceae_R-7 were higher in the C56 group than in the C50 and C80 groups. The relative abundance of Lachnospiraceae_NK3A20 and Rikenellaceaewas_RC9_gut is lower in the C65 group, but the difference was insignificant (p > 0.05). At KEGG level 2, the relative abundance of lipid metabolism and energy metabolism were lowest in the C50 group, and both showed higher relative abundance in the C65 group. (4) Conclusions: In conclusion, the structure of fecal microbiota was affected by different concentrate-to-forage ratios. We found that feeding diets with a concentrate-to-forage ratio of 65:35 improved yaks' growth and energy metabolism.

8.
Front Microbiol ; 13: 964564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033892

RESUMO

To improve the rumen fermentation function and growth performance of yaks (Bos grunniens), better understanding of the effect of different dietary forage to concentrate ratios on rumen microbiota and metabolites is needed. In the present study, three diets with different dietary forage to concentrate ratios (50:50, 65:35, and 80:20) were fed to 36 housed male yaks. The changes in the distribution of rumen microorganisms and metabolites and the interactions between them were studied by 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS). The diversity and richness of microorganisms in the rumen varied according to diet. The most abundant phyla were Firmicutes and Bacteroidetes. Firmicutes was the most abundant in the C50 group, and the relative abundance of Bacteroidetes was significantly lower in the C65 group than in the C80 group (p < 0.05). The Christensenellaceae_R-7_group, Rikenellaceae_RC9_gut_group, and Methanobrevibacter had the highest relative abundances at the genus level. Among them, Christensenellace_R-7_group had the highest relative abundance in the C50 group. The Rikenellaceae_RC9_gut_group was significantly abundant in the C80 group compared with the C50 group. The Methanobrevibacter content was higher in the C65 group than in the other two groups. Both the concentration and metabolic pathways of rumen metabolites were influenced by the dietary concentrate ratio; lipids, lipid-like molecules, organic acid metabolites, and organic oxide-related metabolites differed between the groups. Significant changes were found for six metabolic pathways, including arginine and proline metabolism; glycine, serine, and threonine metabolism; glyoxylate and dicarboxylate metabolism; arginine biosynthesis; glycerophospholipid metabolism; glycerolipid metabolism; and nitrogen metabolism.

9.
Animals (Basel) ; 12(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35681862

RESUMO

This study aimed to evaluate the effects of concentrate supplementation on the growth performance, serum biochemical parameters, rumen fermentation, and bacterial community composition of grazing yaks during the warm season. Eight male yaks (body weight, 123.96 ± 7.43 kg; 3-years) were randomly allocated to two treatments groups: grazing (n = 4, GY) and concentrate supplement group (n = 4, GYS). Concentrate supplementation increased the average daily gain (ADG) (p < 0.05). Glucose (GLU), total protein (TP), and aspartate aminotransferase (AST) serum concentrations were significantly higher in the GYS group than in the GY group (p < 0.05). Ammonia-N, MCP: microbial protein, and total volatile fatty acid concentrations were significantly higher in the GYS group than in the GY group (p < 0.01), whereas the pH and acetate: propionate values were significantly decreased (p < 0.01). The relative abundance of Firmicutes in the rumen fluid was significantly higher in the GYS group than in the GY group (p < 0.01). At the genus level, the relative abundances of Succiniclasticum, Prevotellaceae_UCG_003, Prevotellaceae_UCG_005, and Ruminococcus_1 were significantly greater in the GY group than in the GYS group (p < 0.01). In conclusion, concentrate supplementation improved yaks' growth potential during the warm season, improved ruminal fermentation, and altered core bacteria abundance.

10.
IEEE Trans Image Process ; 28(7): 3219-3231, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30703021

RESUMO

Human free-hand sketches provide the useful data for studying human perceptual grouping, where the grouping principles such as the Gestalt laws of grouping are naturally in play during both the perception and sketching stages. In this paper, we make the first attempt to develop a universal sketch perceptual grouper. That is, a grouper that can be applied to sketches of any category created with any drawing style and ability, to group constituent strokes/segments into semantically meaningful object parts. The first obstacle to achieving this goal is the lack of large-scale datasets with grouping annotation. To overcome this, we contribute the largest sketch perceptual grouping dataset to date, consisting of 20 000 unique sketches evenly distributed over 25 object categories. Furthermore, we propose a novel deep perceptual grouping model learned with both generative and discriminative losses. The generative loss improves the generalization ability of the model, while the discriminative loss guarantees both local and global grouping consistency. Extensive experiments demonstrate that the proposed grouper significantly outperforms the state-of-the-art competitors. In addition, we show that our grouper is useful for a number of sketch analysis tasks, including sketch semantic segmentation, synthesis, and fine-grained sketch-based image retrieval.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...